Spin Clean® PL

G

Wrestling for Clean Water

Features & Benefits

Innovative Filter Design

Compact design, economical since no extra fittings required for the connection of Jain Sand Separator to Disc filter

Standard Pure Polyester / Epoxy coating for Protecting from Corrosion

Coated with more than 70 micron thick deep blue colored pure Polyester powder on outer surface & Epoxy coating from inner side for protection against corrosion and weather effects

Various Connection Options Available

Threaded connection flanged connection or Easy Fix[™] connection available

Draining Facility Available

Drain valve available for draining dirt particles from filter.

Additional Pressure Check Assembly

To check pressure from inlet side & outlet side additional pressure check assembly provided

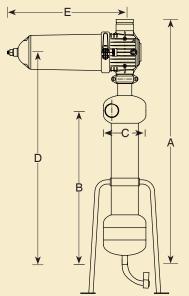
Equipped with Patended Jain Sand Separator

Innovative hydrodynamic patented design used in spin clean filter

Spin Clean® PL - GOLD

Additional Features

- Mild steel construction for Sand separator and special plastic alloy material for Disc filter
- Specially equipped Jain Sand Separator with disc filter for efficient filtration. It also helps to prolong cleaning of disc element
- Removes fine sand and silt particles of size higher than 75 microns.
- Maximum operating pressure 10 kg/cm² (142 psi).
- Can also be supplied in stainless steel as a special order.
- Can be supplied with in multiple batteries option.
- · Can also be supplied with fully automatic option.


Applications

 Used in micro irrigation systems to remove sand and silt particles from irrigation water

Specifications

Nominal Flow Rate		Inlet/ Outlet Connection	Vol.of coll. chamber	Gross Weight			
m³/hr	gpm	inch	litres	kg	lbs		
25	110	2"	13.75	37	-		
40	176	2½"	16.35	41	-		
50	220	3"	23.19	58	-		

Dimensional Specifications

Nominal F	Α	В	С	D	E	
m³/hr	gpm	mm	mm	mm	mm	mm
25	110	1265	805	219	1125	485
40	176	1265	795	219	1125	485
50	220	1400	890	273	1255	600

Clean Pressure Drop Chart

Size	Flow	K		Pressure Drop kg/cm ² - w.r.t. Flow m ³ /hr												
inch	m³/hr		m	5	10	15	20	25	30	40	50	60	70	80	90	100
2	25	0.053	0.086	0.08	0.13	0.19	0.3	0.46	0.7	1.66	3.91	-	-	-	-	-
2 ½	40	0.061	0.066	0.09	0.12	0.16	0.23	0.32	0.44	0.86	1.66	3.21	-	-	-	-
3	50	0.11	0.039	0.13	0.16	0.2	0.241	0.29	0.36	0.53	0.78	1.16	1.72	2.55	3.78	-

Governing equation, $h = k e^{m \chi}$; $h = Pressure drop (kg/cm^2)$; $\chi = Flow rate (m^3/hr)$; K = Pressure drop constant; m = Flow constant (for k & m value refer table)

Note: Filters are tested under standard laboratory test conditions.

