Jain Sand Separator

G

Cyclone Innovation for Clean Water

Features & Benefits

Patented Hydrodynamic Design

Innovative hydrodynamic design to create maximum centrifugal action to separate particles heavier than water

Standard Pure Polyester / Epoxy Coating for Protecting from Corrosion

Coated upto 150 micron thick deep blue colored pure Polyester powder on outer surface & Epoxy coating from inner side for protection against corrosion and weather effects

Innovative Water Inlet

Innovative water inlet provided to create centrifugal action

Equipped with Diffuser Plate

Special diffuser plate is provided to settle dirt particle and push them in to chamber

Various Optional Connections Available

Supplied with threaded, flanged (universal) & Easy Fix™ joint for inlet and outlet connection

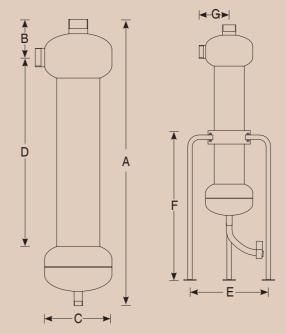
Effective Draining Facility Provided

20mm '8' shape end stop with tube provided to drain silt/ sand particles from collection chamber

Jain Sand Separator

Additional Features

- No moving parts to wear out This eliminates mechanical failures and troublesome replacement parts.
- Highest trapping efficiency 90% trapping efficiency for particle size above 75 micron & specific gravity more than 2.5.
- No downtime requirements All units are designed to operate continuously with no routine shutdowns for cleaning or maintenance.
- Low pressure loss Require no more than 0.3 0.8 Kg/ cm² loss for effective solids removal without troublesome pressure fluctuations.
- Reduces load on secondary Media / Screen filter -Reduces the frequency of cleaning for Media / Screen filter when installed before them.
- Fully Automatic Option On demand Jain Sand Separator can also be supplied with fully automatic option.


Applications

Used in micro irrigation systems to remove sand and silt particles from irrigation water.

Technical Specifications

Flow	Max. Pressure	Inlet/ Outlet	Weight	Drain Size	Drain Capacity	
m³/hr	kg/cm²	Inch	Kg	Inch	Lit	
10 - 15	10	1½"	12.2	3/4"	2.50	
12-30	10	2"	23.6	3/4"	3.03	
20-40	10	2½"	27.2	3/4"	4.73	
40-60	10	3"	45.8	3/4"	8.33	

Dimensional Specifications

Flow	Inlet/ Outlet	Α	В	С	D	E	F	G
(m³/hr)	(Inch)	(mm)						
10-15	1½"	762	111	152	472	350	515	121
12-30	2"	854	127	219	613	350	515	140
20-40	2½"	940	140	219	539	350	515	159
40-60	3"	1067	178	273	591	380	610	209

Clean Pressure Drop Chart

Size	V	Pressure Drop(kg/cm²) w.r.t. Flow (m³/hr)											
Inch	_ ^	m	5	10	15	20	25	30	40	50	60	80	100
1½"	0.052	0.151	-	0.24	0.50	-	-	-	-	-	-	-	-
2"	0.042	0.084	-	0.10	0.15	0.23	0.35	0.53	-	-	-	-	-
2½"	0.090	0.051	-	-	-	0.25	0.32	0.42	0.70	-	-	-	-
3"	0.073	0.038	-	-	-	-	-	-	0.33	0.48	0.70	-	-

Governing equation, $h = k e^{m \chi}$; $h = Pressure drop (kg/cm^2)$; $\chi = Flow rate (m^3/hr)$; K = Pressure drop constant; m = Flow constant (for k & m values refer table)

Note: Filters are tested under standard laboratory test conditions.

Ordering Specifications

	XX	X			
	Flow (m³/hr)	No. of Units			
	10 to 15 - 16	Single Plank			
	12 to 30 - 30				
JSS	20 to 40 - 40	Single - Blank			
	40 to 60 - 60				
	80 - 80	Duplex - D			
	120 - 120				
	180 - 180	Triplex - T			

Example: JSS30 - This code represents Jain Sand Separator Filter - Gold with mild steel construction having 12 to 30 m³/hr nominal flow capacity

