Clean Master® Dual Chamber

Features & Benefits

Standard Pure Polyester / Epoxy coating for Protecting from Corrosion

Coated with more than 70 micron thick deep blue colored pure Polyester powder on outer surface & Epoxy coating from inner side for protection against corrosion and weather effects

Unique Filter Design

Unique dual chamber tank design equipped with mushrooms for filtrations.

High Quality Silica Sand as Media

Filtration media is crushed silica sand/quartz gravel of particle size 1 mm to 2 mm (0.039 to 0.078 inch).

Innovative Mushroom Assembly

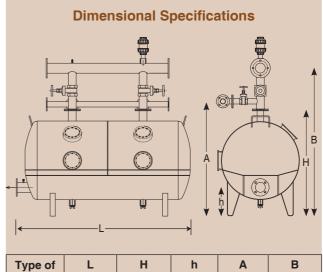
Innovative Mushroom assembly provided to pass filtered water in system.

Various Connection Options Available

Threaded connection, Flanged (universal) connection or Easy Fix™ connection available.

Various Options for Backwash

Available in semi-automatic or fully automatic backwash options.


Clean Master® Dual Chamber

Additional Features

- Manufactured from mild steel as per international fabrication standards.
- Designed for uniform distribution of incoming raw water over the media bed which ensures very effective filtration & backwash.
- Effective filtration of 75 micron (200 mesh).
- High filtration efficiency due to uniform grade of filtration media (silica sand / quartz gravel) and specially designed outlet candles.
- Maximum pressure rating 10 kg/cm² (142 psi).
- Clean-Master can also be supplied with stainless steel body.
- Optional multi tank modules for higher filtration capacities available.

Applications

• For filtration of water in micro irrigation systems to prevent clogging due to physical and biological impurities.

Type of	L		Н		h	1	Α		В	
Backwash	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch
									1730	
Semi/Fully Auto	2010	78	1250	49.2	300	12	1611	63	1396	55

Specifications

Type of Backwash	Inlet / Outlet	Tank Diameter	Filtration Surface		Flow Rate		Quantity of silica sand		Maximum Pressure		Approx. Weight	
	inch	inch	m²	inch ²	m³/h	gpm	kg	lbs	bar	psi	kg	lbs
Manual	4"	36"	1.8	2788	100	379	600	1320	10	142	380	836
Semi/Fully Auto	4"	36"	1.8	2788	100	379	600	1320	10	142	446	981.2

Clean Pressure Drop Chart

Size	V						Pressure Drop(kg/cm²) w.r.t. Flow (m³/hr)							
inch] ^	m	60	70	80	90	100	110	120	140	150	180	200	
4"	0.02538	0.021	0.09	0.11	0.14	0.17	0.21	0.26	0.32	0.48	0.59	1.12	1.70	
4"	0.03791	0.022	0.14	0.18	0.22	0.28	0.35	0.43	0.54	0.84	1.05	2.05	3.20	

Governing equation, $h = k e^{m \chi}$; $h = Pressure drop (kg/cm^2)$; $\chi = Flow rate (m^3/hr)$; K = Pressure drop constant; m = Flow constant (for k & m value refer table)

Note: Filters are tested under standard laboratory test conditions.

